Correspondence to: Kevin Wilk, PT, DPT, Clinical Director Champion Sports Medicine, 806 St. Vincent's Drive, Suite 620, Birmingham, AL 35205, Phone: 205-939-1557, Fax: 205-939-1536, email: moc.enicidemstropsnoipmahc@kliw.nivek
Copyright © 2006 by the Sports Physical Therapy Section, APTAGlenohumeral joint instability is a common pathology encountered in the orthopaedic and sports medicine setting. A wide range of symptomatic shoulder instabilities exist ranging from subtle subluxations due to contributing congenital factors to dislocations as a result of a traumatic episode. Non-operative rehabilitation is utilized in patients diagnosed with shoulder instability to regain their previous functional activities through specific strengthening exercises, dynamic stabilization drills, neuromuscular training, proprioception drills, scapular muscle strengthening program and a gradual return to their desired activities. The specific rehabilitation program should be varied based on the type and degree of shoulder instability present and desired level of function. The purpose of this paper is to outline the specific principles associated with non-operative rehabilitation for each of the various types of shoulder instability and to discuss the specific rehabilitation program for each pathology type.
Keywords: Dynamic stabilization, neuromuscular control, shoulder jointShoulder instability is a common pathology often seen in the orthopaedic and sports medicine setting. The glenohumeral joint allows tremendous amounts of joint mobility to function, thus, making the joint inherently unstable and the most frequently dislocated joint in the body. 1 Due to the joint's poor osseous congruency and capsular laxity, it greatly relies on the dynamic stabilizers and neuromuscular system to provide functional stability. 2 Therefore, differentiation between normal translation and pathological instability is often difficult to determine. A wide range of shoulder instabilities exist from subtle subluxations to gross instability. Often the success of the rehabilitation program is based on the recognition and treatment program designed to treat the specific type of instability present.
Non-operative rehabilitation is often implemented in patients diagnosed with a variety of shoulder instabilities. These instability patterns can range from congenital multidirectional instabilities to traumatic unidirectional dislocations. We have classified glenohumeral joint instabilities into two broad categories: traumatic and atraumatic. Based on the classification system of glenohumeral instability, as well as several other factors, a non-operative rehabilitation program may be developed. The purpose of this paper is to discuss and overview these factors along with the non-operative rehabilitation programs for the various types of shoulder instability in order to return the patient to their previous level of function.
Seven key factors should be considered when designing a rehabilitation program for a patient with an unstable shoulder ( Table ). These factors and their significance to the rehabilitation program will be presented.
Seven key factors to consider in the rehabilitation of the unstable shoulder
Onset of the pathology Degree of instability – subluxation vs. dislocation Frequency of dislocation – chronic vs. acute Direction of instability – anterior, posterior, multidirectional Concomitant pathologies End range neuromuscular control Premorbid activity levelThe first factor to consider in the rehabilitation of a patient with shoulder instability is the onset of the pathology. Pathological shoulder instability may result from an acute, traumatic event or chronic, recurrent instability. The goal of the rehabilitation program may vary greatly based on the onset and mechanism of injury. Following a traumatic subluxation or dislocation, the patient typically presents with significant tissue trauma, pain, and apprehension. The patient who has sustained a dislocation often exhibits more pain due to muscle spasm than a patient who has only subluxed their shoulder. Furthermore, a first-time episode of dislocation is generally more painful than the repeat event. Rehabilitation for the patient with a first-time traumatic episode will be progressed based on the patient's symptoms with emphasis on early controlled range of motion, reduction of muscle spasms and guarding, and relief of pain.
Conversely, a patient presenting with atraumatic instability often presents with a history of repetitive injuries and symptomatic complaints. Often the patient does not complain of a single instability episode but, rather, a feeling of shoulder laxity or an inability to perform specific tasks. Rehabilitation for this patient should focus on early proprioception training, dynamic stabilization drills, neuromuscular control, scapular muscle exercises, and muscle strengthening exercises to enhance dynamic stability due to the unique characteristic of excessive capsular laxity and capsular redundancy in this type of patient.
The second factor is the degree of instability present in the patient and the effect on their function. Varying degrees of shoulder instability exist such as a subtle subluxation or gross instability. The term subluxation refers to the complete separation of the articular surfaces with spontaneous reduction. Conversely, a dislocation is a complete separation of the articular surfaces and requires a specific movement or manual reduction to relocate the joint, resulting in underlying capsular tissue trauma. The degree of trauma to the soft tissue of the glenohumeral joint with a shoulder subluxation is can be quite extensive. Speer et al 3 has reported that in order for a shoulder dislocation to occur, a Bankart lesion and soft tissue trauma must be present on both sides of the glenohumeral joint capsule. Thus, in the situation of an acute traumatic dislocation, the anterior capsule may be avulsed off the glenoid (Bankart lesion) and the posterior capsule may be stretched, allowing the humeral head to dislocate. Warren et al4 refer to this damage to both the anterior and posterior capsule as the “circle stability concept.”
The rate of progression of the rehabilitation program will vary based upon the degree of instability and persistence of symptoms. For example, a patient with mild subluxations and muscle guarding may initially tolerate strengthening exercises and neuromuscular control drills more than a patient with a significant amount of muscular guarding.
The next factor to influence the rehabilitation program is the frequency of dislocation or subluxation. The primary traumatic dislocation is most often treated conservatively with immobilization in a sling and early controlled passive range of motion (ROM) exercises, especially with first time dislocations. The incidence of recurrent dislocation ranges from 17-96% with a mean of 67% in patient populations between the ages of 21-30 years old. 1,5–15 Therefore, the rehabilitation program should progress cautiously in young athletic individuals. It should be noted that Hovelius et al 8,16,17 has demonstrated that the rate of recurrent dislocations is based on the patient's age and not affected by the length of post-injury immobilization. Individuals between the ages of 19 and 29 years are the most likely to experience multiple episodes of instability. Hovelius et al 8,16,17 noted patients in their 20's exhibited a recurrence rate of 60%, whereas, patients in their 30′s to 40′s had less than a 20% recurrence rate. In adolescents, the recurrence rate is as high as 92% 18 and 100% with an open physes. 19
Chronic subluxations, as seen in the atraumatic, unstable shoulder may be treated more aggressively due to the lack of acute tissue damage and less muscular guarding and inflammation. Rotator cuff and periscapular strengthening activities should be initiated while ROM exercises are progressed. Caution is placed on avoiding excessive stretching of the joint capsule through aggressive ROM activities. The goal is to enhance strength, proprioception, dynamic stability and neuromuscular control, especially in the specific points of motion or direction which results in instability complaints.
The fourth factor is the direction of instability present. The three most common forms include anterior, posterior, and multidirectional. Anterior instability is the most common traumatic type of instability seen in the general orthopaedic population, representing approximately 95% of all traumatic shoulder instabilities 12 . Following a traumatic event in which the humeral head is forced into extremes of abduction and external rotation, or horizontal abduction, the glenolabral complex and capsule may become detached from the glenoid rim resulting in anterior instability. This type of detachment is referred to a Bankart lesion.( Figure 1 ) Baker et al 20 have identified four types of Bankart lesions based on the size and the degree of tissue involvement. Conversely, rarely will a patient with atraumatic instability due to capsular redundancy dislocate their shoulder. It is the author's opinion that these patients are more likely to repeatedly sublux the joint without complete separation of the humerus from the glenoid rim. Capsular avulsions can occur on the glenoid side (Bankart lesion) or on the humeral head side referred to as a HAGL lesion (humeral avulsion of the inferior glenohumeral ligament). 21–23
Bankart lesion commonly observed with a traumatic dislocation.
1a. Drawing illustrating a Bankart lesion. The arrow denotes the avulsed capsule from the glenoid.
1b. CT arthrogram of a bony Bankart lesion. The large arrow shows the dye that has leaked out of the capsule. The small arrow shows the bony lesion which has pulled away from the glenoid rim.
1c. An arthroscopic view of a Bankart lesion.
Posterior instability occurs less frequently, only accounting for less than 5% of traumatic shoulder dislocations. 24,25 This type of instability is often seen following a traumatic event such as falling onto an outstretched hand or from a pushing mechanism. However, patients with significant atraumatic laxity may complain of posterior instability especially with shoulder elevation, horizontal adduction and excessive internal rotation due to the strain placed on the posterior capsule in these positions. In professional or collegiate football, the incidence of posterior shoulder instability appears higher than the general population. This is especially true in linemen. Mair et al 26 reported on nine athletes with posterior instability in which eight of nine were linemen and seven were offensive linemen. Often, these patients require surgery as Mair et al 26 also reported 75% required surgical stabilization. Kaplan et al 27 reported in a study of collegiate football players that 78% required surgical stabilization.
Multidirectional instability (MDI) can be identified as shoulder instability in more than one plane of motion. Patients with MDI have a congenital predisposition and exhibit ligamentous laxity due to excessive collagen elasticity of the capsule. Furthermore, Rodeo et al 28 reported that this type of patient turns over collagen at a faster rate. The authors consider an inferior displacement of greater than 8-10mm during the sulcus maneuver ( Figure 2 ) with the arm adducted to the side as significant hypermobility, thus suggesting significant congenital laxity. 2
Sulcus maneuver to assess inferior capsular laxity
Due to the atraumatic mechanism and lack of acute tissue damage, ROM is often normal to excessive. Patients with recurrent shoulder instability due to MDI generally have weakness in the rotator cuff, deltoid muscle, and scapular stabilizers with poor dynamic stabilization and inadequate static stabilizers. Initially, the focus of the rehabilitation program is on maximizing dynamic stability, scapula positioning, proprioception, and improving neuromuscular control in mid ROM. Also, rehabilitation should focus on improving the efficiency and effectiveness of glenohumeral joint force couples through co-contraction exercises, rhythmic stabilization, and neuromuscular control drills. Isotonic strengthening exercises for the rotator cuff, deltoid muscle, and scapular muscles are also emphasized to enhance dynamic stability. Morris et al 29 reported the EMG activity of the rotator cuff and deltoid muscle in MDI and asymptomatic subjects. The authors noted the most significant difference was in the deltoid muscles compared to the rotator cuff muscles in their groups.
The fifth factor involves considering other tissues that may have been affected and the premorbid status of the tissue. Disruption of the anterior capsulolabral complex from the glenoid commonly occurs during a traumatic injury resulting in an anterior Bankart lesion. Often osseous lesions may be present such as a concomitant Hill Sach's lesion caused by an impaction of the postero-lateral aspect of the humeral head as it compresses against the anterior glenoid rim during relocation. This Hill Sach's lesion has been reported in up to 80% of dislocations. 30–32 Conversely, a reverse Hill Sach's lesion may be present on the anterior aspect of the humeral head due to a posterior dislocation. 33 Occasionally, a bone bruise may be present in individuals who have sustained a shoulder dislocation as well as pathology to the rotator cuff. In rare cases of extreme trauma, the brachial plexus may become involved as well. 34 Other common injuries in the unstable shoulder may involve the superior labrum (SLAP lesion) such as a type V SLAP lesion characterized by a Bankart lesion of the anterior capsule extending into the anterior superior labrum. 35 These concomitant lesions may significantly slow down the rehabilitation program in order to protect the healing tissue.
The sixth factor to consider is the patient's level of neuromuscular control, particularly at end range. Neuromuscular control may be defined as the efferent, or motor, output in reaction to an afferent, or sensory input. 2,10 The afferent input is the ability to detect the glenohumeral joint position and motion in space with resultant efferent response by the dynamic stabilizers as they blend with the joint capsule to assist in stabilization of the humeral head. Injury with resultant insufficient neuromuscular control could result in deleterious effects to the patient. As a result, the humeral head may not center itself within the glenoid, thereby, compromising the surrounding static stabilizers. The patient with poor neuromuscular control may exhibit excessive humeral head migration with the potential for injury, an inflammatory response, and reflexive inhibition of the dynamic stabilizers.
Several authors have reported that neuromuscular control of the glenohumeral joint may be negatively affected by joint instability. Lephart et al 10 compared the ability to detect passive motion and the ability to reproduce joint positions in patients with normal, unstable, and surgically repaired shoulders. The authors reported a significant decrease in proprioception and kinesthesia in the shoulders with instability when compared to both normal shoulders and shoulders undergoing surgical stabilization procedures. Smith and Brunoli 36 reported a significant decrease in proprioception following a shoulder dislocation. Blasier et al 37 reported that individuals with significant capsular laxity exhibited a decrease in proprioception compared to patients with normal laxity. Zuckerman et al 38 noted that proprioception is affected by the patient's age with older subjects exhibiting diminished proprioception than a comparably younger population. Thus, the patient presenting with traumatic or acquired instability may present with poor neuromuscular control.
The final factor to consider in the non-operative rehabilitation of the unstable shoulder is the arm dominance and the desired activity level of the patient. If the patient frequently performs an overhead motion or sporting activities such as a tennis, volleyball, or a throwing sport, then the rehabilitation program should include sport specific dynamic stabilization exercises, neuromuscular control drills, and plyometric exercises in the overhead position once full, pain free ROM and adequate strength has been achieved. Patients whose functional demands involve below shoulder level activities will follow a progressive exercise program to return full ROM and strength. The success rates of patients returning to overhead sports after a traumatic dislocation of their dominant arm are extremely low. 39 Arm dominance can also significantly influence the successful outcome. The recurrence rates of instabilities vary based on age, activity level, and arm dominance. In athletes involved in collision sports, the recurrence rates have been reported collision sports, the recurrence rates have been reported between 86-94%. 6,40–42
Patients may be classified into two common forms of shoulder instability - traumatic and atraumatic. Specific guidelines to consider in the rehabilitation of each patient population will be outlined. A four-phase rehabilitation program will be discussed for traumatic shoulder instability, followed by an overview of variations and key rehabilitation principles for atraumatic shoulder instability (congenital and acquired laxity).
Following a first time traumatic shoulder dislocation or subluxation, the patient often presents in considerable pain, muscle spasm, and an acute inflammatory response. The patient usually self-limits their motion by guarding the injured extremity in an internally rotated and adducted position against the side of their body to protect the injured shoulder. The goals of the acute phase are to 1) diminish pain, inflammation, and muscle guarding 2) promote and protect healing soft tissues, 3) prevent the negative effects of immobilization, 4) re-establish baseline dynamic joint stability, and 5) prevent further damage to glenohumeral joint capsule. (Appendix 1)
Immediate limited and controlled motion is allowed following a traumatic dislocation in patients between the ages of 18-28 years but immobilize patients between the ages of 29-54 years old. However, motion is restricted so as to not to cause further tissue attenuation. A short period of immobilization in a sling to control pain and to allow scar tissue to form for enhanced stability may be necessary for 7-14 days although no long-term benefits regarding recurrence rates and immobilization have been made in younger patients between the ages of 18-28 years old. 8,43 Individuals above the age of 28 are usually immobilized for 2-4 weeks to allow scarring of the injured capsule. Potential complications with immobilization may include a decrease in joint proprioception, muscle disuse and atrophy, and a loss of ROM in specific age groups. Therefore, prolonged use of immobilization following a traumatic dislocation may not be recommended in all patients.
The ideal position to immobilize the glenohumeral has traditionally been in internal rotation with the arm close to the body. Recent studies by Itoi et al 44,45 examined positional differences of immobilization and compared the rates of recurrent dislocations. The authors concluded that immobilization in external rotation significantly reduced the recurrence rate of instability in chronic and first-time dislocators. Itoi et al 45 has recommended immobilization with the arm in 30 degrees of abduction and external rotation, compared to a group of patients immobilized in internal rotation. The results indicated a 0% recurrence rate in external rotation and 30% incidence of instability in the group immobilized in internal rotation. The authors stated that the resultant Bankart lesion had improved coaptation to the glenoid rim with immobilization in external rotation versus conventional immobilization in a sling.
Passive ROM is initiated in a restricted and protected range based on the patient's symptoms. The early motion is intended to promote healing, enhance collagen organization, stimulate joint mechanoreceptors, and aid in decreasing the patient's pain through neuromuscular modulation. 14,46–48 Painfree active-assisted ROM exercises such as pendulums and external/internal rotation at 45 degrees of abduction using an L-bar (Breg Corp. Vista, CA) may also be initiated. Passive ROM exercises are also performed in a painfree arc of motion. Modalities such as ice, transcutaneous electrical nerve stimulation (TENS), and high voltage stimulation may also be beneficial to decrease pain, inflammation, and muscle guarding.
Strengthening exercises are initially performed through submaximal, painfree isometric contractions to initiate muscle recruitment and retard muscle atrophy. Electrical stimulation of the posterior cuff musculature may also be incorporated to enhance the muscle fiber recruitment process early on in the rehabilitation process and also in the next phase when the patient initiates iso-tonic strengthening activities.( Figure 3 ) Reinold et al 49 believe that the use of electrical stimulation may improve force production of the rotator cuff particularly the external rotators immediately after an acute injury.
Electrical stimulation to the posterior rotator cuff during exercise activity to improve muscle fiber recruitment and contraction
Dynamic stabilization exercises are also performed to re-establish dynamic joint stability. The patient maintains a static position as the rehabilitation specialist performs manual rhythmic stabilization drills to facilitate muscular co-contractions. These manual rhythmic stabilization drills are performed for the shoulder internal and external rotators in the scapular plane at 30 degrees of abduction and are performed at painfree angles which do not compromise the healing capsule. Rhythmic stabilization for flexion and extension may also be performed with the shoulder at 100 degrees of flexion and 10 degrees of horizontal abduction. Strengthening exercises are also performed for the scapular retractors and depressors to reposition the scapula in its proper position. Scapula strengthening is critical for successful rehabilitation. Closed kinetic chain exercises such as weight shifting on a ball are performed to produce a co-contraction of the surrounding glenohumeral musculature and to facilitate joint mechanoreceptors to enhance proprioception. Weight shifts are usually able to be performed immediately following the injury unless posterior instability is present.
During the intermediate phase, the program emphasizes regaining full ROM along with progressing strengthening exercises of the rotator cuff, and re-establishing muscular balance of the glenohumeral joint, scapular stabilizers, and surrounding shoulder muscles. Before the patient enters Phase II, certain criteria must be met which include diminished pain and inflammation, satisfactory static stability, and adequate neuromuscular control.
To achieve the desired goals of this phase, passive ROM is performed to the patient's tolerance with the goal of attaining nearly full ROM. Active-assisted ROM exercises using a rope and pulley along with flexion and external/internal rotation exercises at 90 degrees of abduction using an L-bar may be progressed to tolerance without stressing the involved tissues. External rotation at 90 degrees of abduction is generally limited to 65-70 degrees to avoid overstressing the healing anterior capsuloligamentous structures for approximately 4-8 weeks but eventually increasing ROM to full motion as the patient tolerates.
Isotonic strengthening exercises are also initiated during this phase. Emphasis is placed on increasing the strength of the internal and external rotators and scapular muscles to maximize dynamic stability. The ultimate goal of the strengthening phase is to re-establish muscular balance following the injury. Kibler 1 noted that scapular position and strength deficits have been shown to contribute to glenohumeral joint instability. Exercises initially include external and internal rotation with exercise tubing at 0 degrees of abduction along with sidelying external rotation and prone rowing. During the latter part of this phase, isotonic exercises are progressed to emphasize rotator cuff and scapulothoracic muscle strength. Manual resistive exercises such as sidelying external rotation and prone rowing may also prove beneficial by having the clinician vary the resistance throughout the ROM. Incorporating manual concentric and eccentric manual exercises and rhythmic stabilization drills at end range to enhance neuromuscular control and dynamic stability is also recommended.( Figure 4 )
Sidelying manual external rotation while the clinician imparts rhythmic stabilization drills at end range
Closed kinetic chain exercises are progressed to include a hand on the wall stabilization drills in the plane of the scapular at shoulder height as the patient tolerates. ( Figure 5 ) Push-ups are performed first with hands on a table then progressed to a push-up on a ball or unstable surface while the rehabilitation specialist performs rhythmic stabilization to the involved and uninvolved upper extremity along with the trunk to integrate dynamic stability and core strengthening (tilt board, ball, etc.).( Figure 6 ) Caution should be placed while performing closed kinetic chain exercises in patients with posterior instability for 6-8 weeks at allow for adequate healing and strength gains. Furthermore, patients with significant scapular winging should perform push-ups until adequate scapular strength is accomplished. Core stabilization drills should also be performed to enhance scapular control. Additionally, strengthening exercises may be advanced in regards to resistance, repetitions, and sets as the patient improves. End range rhythmic stabilization drills with the arm at 0 degrees of adduction or at 45 degrees of abduction are also performed. Exercises such as tubing with manual resistance and end range rhythmic stabilization drills are also performed.( Figure 7 ) The goal of these exercise drills is to improve proprioception and neuromuscular control at end range.